domingo, 9 de fevereiro de 2020


FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]


  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • x
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D




Em teoria das probabilidades, um processo empírico é um processo estocástico que descreve a proporção de objetos em um sistema em um dado estado. Para um processo em um espaço de estados discreto, uma cadeia de Markov populacional de tempo contínuo[1][2] ou modelo populacional de Markov[3] é um processo que conta o número de objetos em um dado estado (sem reescalonamento). Na teoria de campo médio, teoremas do limite (conforme o número de objetos se torna grande) são considerados e generalizam o teorema central do limite para medidas empíricas.[4] Aplicações da teoria dos processos empíricos surgem na estatística não paramétrica.[5]

Definição[editar | editar código-fonte]

Para variáveis aleatórias independentes e identicamente distribuídas  em  com função distribuição acumulada comum , a função distribuição empírica é definida por:
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS 




em que  é a função indicadora do conjunto .[6]
Para todo  fixo,  é uma sequência de variáveis aleatórias que converge a  quase certamente pela lei forte dos grandes números, isto é,  converge pontualmente a . O matemático ucraniano Valery Glivenko e o matemático italiano Francesco Paolo Cantelli fortaleceram este resultado ao provar a convergência uniforme de  a  pelo teorema de Glivenko–Cantelli.[7]
Uma versão centralizada e escalonada da medida empírica é a medida sinalizada:
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS 




Isto induz um mapa sobre as funções mensuráveis  dado por:
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS 




Pelo teorema central do limite,  converge em distribuição a uma variável aleatória normal  para um conjunto mensurável fixo .[8] De forma semelhante, para uma função fixa  converge em distribuição a uma variável aleatória normal , desde que  e .[9]
 é um processo empírico indexado por , uma coleção de subconjuntos mensuráveis de .[10]
 é um processo empírico indexado por , uma coleção de funções mensuráveis de  a .[11]
Um resultado significante na área dos processos empíricos é o teorema de Donsker. Isto levou a um estudo das classes de Donsker: conjuntos de funções com a útil propriedade de processo empíricos indexados por estas classes que convergem fracamente a um certo processo gaussiano.[12] Ainda que se possa mostrar que classes de Donsker são classes de Glivenko–Cantelli, o contrário não é verdadeiro em geral.




Em teoria das probabilidades, um processo estocástico contínuo é um tipo de processo estocástico que pode ser considerado "contínuo" como uma função de seu "tempo" ou parâmetro de índice. A continuidade é uma boa propriedade para um processo, mais precisamente, para seus caminhos amostrais, já que implica que eles são bem comportados em algum sentido e, por isso, mais fáceis de analisar. Está implícito aqui que o índice do processo estocástico é uma variável contínua. Alguns autores definem um "processo (estocástico) contínuo" como um processo que exige apenas que a variável do índice seja contínua, sem continuidade dos caminhos amostrais. Em alguma terminologia, este seria um processo estocástico de tempo contínuo, em paralelo à um "processo de tempo discreto". Dada esta possível confusão, é necessário cautela.[1]

    Definições[editar | editar código-fonte]

    Considere  um espaço de probabilidade algum intervalo de tempo e  um processo estocástico. Por simplicidade, o resto deste artigo assumirá que o espaço de estados  é a reta real , mas as definições permanencem mutatis mutandis se  for , um espaço vetorial normado, ou mesmo um espaço métrico geral.

    Continuidade com probabilidade um[editar | editar código-fonte]

    Dado um tempo , diz-se que  é contínuo com probabilidade um em  se:
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS 




    Continuidade em quadrado da média[editar | editar código-fonte]

    Dado um tempo , diz-se que  é continuo em quadrado da média em  se  e:
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS 



    Continuidade em probabilidade[editar | editar código-fonte]

    Dado um tempo , diz-se que  é contínuo em probabilidade em  se, para todo :
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS 




    Equivalentemente,  é contínuo em probabilidade no tempo  se:
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS 




    Continuidade em distribuição[editar | editar código-fonte]

    Dado um tempo , diz-se que  é contínuo em distribuição em  se:
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS 




    para todos os pontos  em que  é contínua, sendo que  denota a função distribuição acumulada da variável aleatória .




    Representação Lévy–Khintchine[editar | editar código-fonte]

    A distribuição de um processo Lévy é caracterizada por sua função característica, que por sua vez é dada pela fórmula Lévy–Khintchine (que é geral para todas as distribuições infinitamente divisíveis):[1] Se  for um processo Lévy, então sua função característica  será dada por
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS 


    na qual  será a função indicadora e  será a medida sigma-finite chamada de medida Lévy de , o que satisfaz a propriedade
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS 



    Um processo Lévy pode conter três componentes independentes: um desvio linear, um movimento browniano e uma superposição de processos de Poisson (centralizados) independentes, com diferentes tamanhos de salto representa a taxa de chegada (intensidade) do processo de Poisson, com salto de tamanho . Estes três componentes, e, assim, a representação Lévy–Khintchine, são totalmente determinados pelo trio Lévy–Khintchine . Especificamente, o único (não-determinístico) processo de Lévy contínuo é um movimento browniano com deriva.



    O processo Ornstein–Uhlenbeck é um protótipo de um processo de relaxação ruidoso. Considere por exemplo uma mola de Hooke com constante de mola  cuja dinâmica é altamente superamortecida com coeficiente de fricção . Na presença de flutuações térmicas com temperatura , o comprimento  da mola flutuará estocasticamente em torno do comprimento de repouso da mola . Sua dinâmica estocástica é descrita por um processo de Ornstein–Uhlenbeck com:
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS 



    em que  deriva da equação de Stokes–Einstein  para a constante de difusão efetiva. Em ciências físicas, a equação diferencial estocástica de um processo Ornstein–Uhlenback é reescrita como uma equação de Langevin:
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS 




    em que  é um ruído gaussiano branco com .[6] As flutuações são correlacionadas como:
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS 



    com tempo de correlação .
    Em equilíbrio, a mola armazena uma energia média  de acordo com o teorema da equipartição.[7]




    Considere um espaço de probabilidade  com filtração , para algum conjunto de índice (totalmente ordenado; e um espaço mensurável . Diz-se que um processo estocástico  com valores  adaptado à filtração possui a propriedade de Markov se, para cada  e para cada  com ,
    [16]
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS 



    No caso em que  for um conjunto discreto com sigma-álgebra discreta e , isto pode ser reformulado como segue:
    X

    FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS